nma_inla fits a network meta-analysis model using INLA.
nma_inla(datINLA, likelihood = NULL, fixed.par = c(0, 1000), tau.prior = "uniform", tau.par = c(0, 5), kappa.prior = "uniform", kappa.par = c(0, 5), mreg = FALSE, type = "consistency", verbose = FALSE, inla.strategy = "simplified.laplace", improve.hyperpar.dz = 0.75, correct = FALSE, correct.factor = 10, improve.hyperpar = TRUE)
| datINLA | An object of |
|---|---|
| likelihood | The likelihood to be used. |
| fixed.par | A numerical vector specifying the parameter of the normal prior density for basic parameters, first value is parameter for mean, second is for variance. |
| tau.prior | A string specifying the prior density for the heterogeneity standard deviation, options are 'uniform' for uniform prior and 'half-normal' for half-normal prior. |
| tau.par | A numerical vector specifying the parameter of the prior density for heterogenety stdev.
|
| kappa.prior | A string specifying the prior density for the inconsistency standard deviation, options are 'uniform' for uniform prior and 'half-normal' for half-normal prior. |
| kappa.par | A numerical vector specifying the parameter of the prior.
density for inconsistency stdev. The definition of the priors is the same as for |
| mreg | Logical indicating whether covariate(s) should be incorporated to fit a
network meta-regression model, default |
| type | A string indicating the type of the model, options are "FE", "consistency" and "jackson". |
| verbose | Logical indicating whether the program should run in a verbose model, default |
| inla.strategy | A string specfying the strategy to use for the approximations of INLA;
one of 'gaussian', 'simplified.laplace' (default) or 'laplace', see |
| improve.hyperpar.dz | Step length in the standardized scale used in the construction of the grid, default 0.75,
see |
| correct | Logical Add correction for the Laplace approximation, default |
| correct.factor | Numerical Factor used in adjusting the correction factor if |
| improve.hyperpar | Improve the estimates of the posterior marginals for the hyperparameters
of the model using the grid integration strategy, default |
nma_inla returns a nma_inla object.
The following likelihood types are supported
normal: for continuous (mean difference) data.
Required coloumns: [mean, std.err]
Result: relative mean difference
binomial: for dichotomous data.
Required coloumns: [responders, sampleSize]
Result: log odds ratio
normal: for event-rate (survival) data.
Required coloumns: [responders, exposure]
Result: log hazard ratio
The following model types are supported
FE, ordinary fixed effect model, assuming homogeneity between trials
(Dias et al., 2013)
consistency, ordinary consistency model, assuming consistency in the
network. (Jackson et al., 2014)
jackson, the design-by-treatment interaction model with random
inconsistency parameters. (Jackson et al., 2014)
SmokdatINLA <- create_INLA_dat(dat = Smokdat, armVars = c('treatment' = 't', 'responders' = 'r' ,'sampleSize' = 'n'), nArmsVar = 'na')# NOT RUN { ## Fitting a consistency model if(requireNamespace('INLA', quietly = TRUE)){ require('INLA', quietly = TRUE) fit.Smok.cons.INLA <- nma_inla(SmokdatINLA, likelihood = 'binomial', type = 'consistency', tau.prior = 'uniform', tau.par = c(0, 5)) } # }