meta_inla
fits a pairwise meta-analysis model using INLA
meta_inla(datINLA, fixed.par = c(0, 1000), tau.prior = "uniform", tau.par = c(0, 5), type = "FE", approach = "arm-level", mreg = FALSE, verbose = FALSE, inla.strategy = "simplified.laplace", improve.hyperpar.dz = 0.75, correct = FALSE, correct.factor = 10)
datINLA | An object of |
---|---|
fixed.par | A numerical vector specifying the parameter of the normal prior density for mean treatment effect, first value is parameter for mean, second is for variance. |
tau.prior | A string specifying the prior density for the heterogeneity standard deviation, options are 'uniform' for uniform prior and 'half-normal' for half-normal prior. |
tau.par | A numerical vector specifying the parameter of the prior density for heterogenety stdev.
|
type | A string indicating the type of the model, options are "FE", "RE". |
approach | A string indicating the approach of the model, options are "summary-level", "arm-level" |
mreg | Logical indicating whether covariate(s) should be incorporated to fit a
meta-regression model, default |
verbose | Logical indicating whether the program should run in a verbose model, default |
inla.strategy | A string specfying the strategy to use for the approximations of INLA;
one of 'gaussian', 'simplified.laplace' (default) or 'laplace', see |
improve.hyperpar.dz | Step length in the standardized scale used in the construction of the grid, default 0.75,
see |
correct | Logical Add correction for the Laplace approximation, default |
correct.factor | Numerical Factor used in adjusting the correction factor if |
meta_inla
returns a meta_inla
object with components:
The following model types are supported
FE
, fixed-effect model
RE
, random effects model
data('TBdat') ## Create the dataset suitable for INLA TBdatINLA <- create_INLA_dat_pair(TBdat$TRT, TBdat$CON, TBdat$TRTTB, TBdat$CONTB) ## Fitting a random-effects model using arm-level approach# NOT RUN { if(requireNamespace('INLA', quietly = TRUE)){ require('INLA', quietly = TRUE) fit.TB.RE.INLA <- meta_inla(TBdatINLA, type = 'RE', approach = 'arm-level', tau.prior = 'uniform', tau.par = c(0, 5)) } # }